
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to
provide information security such as confidentiality or authenticity.
A block cipher by itself is only suitable for the secure cryptographic transformation (encryption
or decryption) of one fixed-length group of bits called a block.
A mode of operation describes how to repeatedly apply a cipher's single-block operation to
securely transform amounts of data larger than a block.

Most modes require a unique binary sequence, often called an initialization vector (IV), for each
encryption operation. The IV has to be non-repeating and, for some modes, random as well.
The initialization vector is used to ensure distinct ciphertexts are produced even when the same
plaintext is encrypted multiple times independently with the same key.
Block ciphers may be capable of operating on more than one block size, but during
transformation the block size is always fixed.
Block cipher modes operate on whole blocks and require that the last part of the data be
padded to a full block if it is smaller than the current block size.

An initialization vector has different security requirements than a key, so the IV usually does not
need to be secret.
However, in most cases, it is important that an IV is never reused under the same key.
For CBC and CFB, reusing an IV leaks some information about the first block of plaintext, and
about any common prefix shared by the two messages.
For OFB and CTR, reusing an IV completely destroys security.
This can be seen because both modes effectively create a bitstream that is XORed with the
plaintext, and this bitstream is dependent on the key and IV only.
Reusing a bitstream destroys security.
In CBC mode, the IV must, in addition, be unpredictable at encryption time; in particular, the
(previously) common practice of re-using the last ciphertext block of a message as the IV for the
next message is insecure (for example, this method was used by SSL 2.0).
If an attacker knows the IV (or the previous block of ciphertext) before the next plaintext is
specified, they can check their guess about plaintext of some block that was encrypted with the
same key before (this is known as the TLS CBC IV attack).

100_005 Modes-of-Encr H-functions

 100_005 Modes-of-Encr H-functions Page 1

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Confidentiality
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Block_(data_storage)
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Block_size_(cryptography)
https://en.wikipedia.org/wiki/Padding_(cryptography)

Electronic codebook (ECB)
The simplest of the encryption modes is the electronic codebook (ECB) mode (named after
conventional physical codebooks). The message is divided into blocks, and each block is
encrypted separately

Cipher block chaining (CBC)
Ehrsam, Meyer, Smith and Tuchman invented the cipher block chaining (CBC) mode of
operation in 1976.
In CBC mode, each block of plaintext is XORed with the previous ciphertext block before being
encrypted.
This way, each ciphertext block depends on all plaintext blocks processed up to that point.
To make each message unique, an initialization vector - IV must be used in the first block.

 100_005 Modes-of-Encr H-functions Page 2

https://en.wikipedia.org/wiki/Codebook
https://en.wikipedia.org/wiki/XOR
https://en.wikipedia.org/wiki/Initialization_vector

The mathematical formula for CBC decryption is:

Example

CBC has been the most commonly used mode of operation. Its main drawbacks are that encryption
is sequential i.e., it cannot be parallelized.

If the first block has index 1, the mathematical formula for CBC encryption is

CBC

Cipher block
chaining

Encryption
parallelizable:

No

Decryption
parallelizable:

Yes

Random read
access:

Yes

Counter (CTR)
CTR mode like OFB, counter mode turns a block cipher into a stream cipher.

It generates the next keystream block by encrypting successive values of a "CounTeR".
The counter can be any function which produces a sequence which is guaranteed not to repeat for a
long time, although an actual increment-by-one counter is the simplest and most popular.
The usage of a simple deterministic input function used to be controversial; critics argued that
 100_005 Modes-of-Encr H-functions Page 3

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/Keystream

The usage of a simple deterministic input function used to be controversial; critics argued that
"deliberately exposing a cryptosystem to a known systematic input represents an unnecessary risk."
However, today CTR mode is widely accepted and any problems are considered a weakness of the
underlying block cipher, e.g. AES which is expected to be secure regardless of systemic bias in its
input.
Along with CBC, CTR mode is one of two block cipher modes recommended by Niels Ferguson and
Bruce Schneier.
CTR mode was introduced by Whitfield Diffie and Martin Hellman in 1979.
CTR mode has similar characteristics to OFB, but also allows a random access property during
decryption.
CTR mode is well suited to operate on a multi-processor machine where blocks can be encrypted in
parallel.
Furthermore, it does not suffer from the short-cycle problem that can affect OFB.
If the IV/nonce is random, then they can be combined together with the counter using any invertible
operation (concatenation, addition, or XOR) to produce the actual unique counter block for
encryption.
In case of a non-random nonce (such as a packet counter), the nonce and counter should be
concatenated (e.g., storing the nonce in the upper 64 bits and the counter in the lower 64 bits of a
128-bit counter block).

Simply adding or XORing the nonce and counter into a single value would break the security under a
chosen-plaintext attack in many cases, since the attacker may be able to manipulate the entire IV–
counter pair to cause a collision.
Once an attacker controls the IV–counter pair and plaintext, XOR of the ciphertext with the known
plaintext would yield a value that, when XORed with the ciphertext of the other block sharing the
same IV–counter pair, would decrypt that block.
Note that the nonce in this diagram is equivalent to the initialization vector (IV) in the other diagrams.
However, if the offset/location information is corrupt, it will be impossible to partially recover such data due to the dependence on byte offset.

 100_005 Modes-of-Encr H-functions Page 4

https://en.wikipedia.org/wiki/Whitfield_Diffie
https://en.wikipedia.org/wiki/Martin_Hellman
https://en.wikipedia.org/wiki/Chosen-plaintext_attack
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Initialization_vector

Counter CTR

Encryption parallelizable: Yes

Decryption parallelizable: Yes

Random read access: Yes

A cryptographic hash function is a special class of hash function that has
certain properties which make it suitable for use in cryptography. It is a
mathematical algorithm that maps data of finite size to a bit string of a
fixed size (a hash function) which is designed to also be a one-way
function, that is, a function which is infeasible to invert.
The only way to recreate the input data from an ideal cryptographic hash
function's output is to attempt a brute-force search of possible inputs to
see if they produce a match.
The input data is often called the message, and the output (the hash
value or hash) is often called the message digest or simply the digest.

From <https://en.wikipedia.org/wiki/Cryptographic_hash_function>

Cryptographic hash functions

 100_005 Modes-of-Encr H-functions Page 5

https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Bit_string
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Cryptographic_hash_function

Cryptographic hash functions have many information-security applications,
notably in digital signatures, message authentication codes (HMACs), and other
forms of authentication. They can also be used as ordinary hash functions, to
index data in hash tables, for fingerprinting, to detect duplicate data or
uniquely identify files, and as checksums to detect accidental data corruption.
Indeed, in information-security contexts, cryptographic hash values are
sometimes called (digital) fingerprints, checksums, or just hash values, even
though all these terms stand for more general functions with rather different
properties and purposes.

A cryptographic hash function (specifically SHA-1) at work. A small change in the input (in the
word "over") drastically changes the output (digest). This is the so-called avalanche effect.

Properties

it is quick to compute the hash value for any given message.•
a small change to a message should change the hash value so extensively
that the new hash value appears uncorrelated with the old hash value.

•

Most cryptographic hash functions are designed to take a string of any
finite length as input and produce a fixed-length hash value.
A cryptographic hash function must be able to withstand all known types
of cryptanalytic attack.

40 Hex numbers = 160 bits

 100_005 Modes-of-Encr H-functions Page 6

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Message_authentication_codes
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://en.wikipedia.org/wiki/Checksum
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Avalanche_effect
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack

of cryptanalytic attack.
In theoretical cryptography, the security level of a cryptographic hash
function has been defined using the following properties:

Pre-image resistance
Given a hash value h it should be difficult to find any message m' such
that h = hash(m'). This concept is related to that of one-way function.
Functions that lack this property are vulnerable to preimage attacks.

•

Second pre-image resistance
Given an input m1 it should be difficult to find (different) input m2 such
that hash(m1) = hash(m2).

•

Functions that lack this property are vulnerable to second-preimage
attacks.

Collision resistance
It should be difficult to find any two different messages m1 and m2 such
that hash(m1) = hash(m2). Such a pair is called a cryptographic hash
collision. This property is sometimes referred to as strong collision
resistance. It requires a hash value at least twice as long as that required
for preimage-resistance; otherwise collisions may be found by a birthday
attack.[2]

•

These properties form a hierarchy, in that collision resistance implies
second pre-image resistance, which in turns implies pre-image resistance,
while the converse is not true in general. [3]

The weaker assumption is always preferred in theoretical cryptography,
but in practice, a hash-functions which is only second pre-image resistant is
considered insecure and is therefore not recommended for real
applications.
Informally, these properties mean that a malicious adversary cannot
replace or modify the input data without changing its digest.
Thus, if two strings have the same digest, one can be very confident that
they are identical.

Illustration

>> sha256('RootHash PrevHash 737327631')
ans = F4AE534CD226FAF799 8C8424B348E020BA80639A687E93A0B8C5130ED C51E6DE
>> sha256('RootHash PrevHash 737327632')
ans = B856211DF2EE15E30AB770C1A43CE014ECFE573182AFD885B28D96854DBC5F21
>> sha256('RootHash PrevHash 737327633')
ans = 9C18C764E347A58E57AC3F7A3C2874D5889A0E802699FEA47EEFF8C03BFEDA69

 100_005 Modes-of-Encr H-functions Page 7

https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
https://en.wikipedia.org/wiki/Cryptanalysis#Types_of_cryptanalytic_attack
https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Preimage_attack
https://en.wikipedia.org/wiki/Collision_resistance
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Hash_collision
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Birthday_attack
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-KatzLindell-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-FOOTNOTERogawayShrimpton2004in_Sec._5._Implications-3
https://en.wikipedia.org/wiki/Adversary_(cryptography)

Commitment
An illustration of the potential use of a cryptographic hash is as
follows: Alice poses a tough math problem to Bob and claims she has solved it.
Bob would like to try it himself, but would yet like to be sure that Alice is not
bluffing.
Therefore, Alice writes down her solution, computes its hash and tells Bob the
hash value (whilst keeping the solution secret).
Then, when Bob comes up with the solution himself a few days later, Alice can
prove that she had the solution earlier by revealing it and having Bob hash it
and check that it matches the hash value given to him before. (This is an
example of a simple commitment scheme; in actual practice, Alice and Bob will
often be computer programs, and the secret would be something less easily
spoofed than a claimed puzzle solution).

Verifying the integrity of files or messages
Main article: File verification
An important application of secure hashes is verification of message integrity.
Determining whether any changes have been made to a message (or a file),
for example, can be accomplished by comparing message digests calculated
before, and after, transmission (or any other event).
For this reason, most digital signature algorithms only confirm the
authenticity of a hashed digest of the message to be "signed". Verifying the
authenticity of a hashed digest of the message is considered proof that the
message itself is authentic.
MD5, SHA1, or SHA2 hashes are sometimes posted along with files on
websites or forums to allow verification of integrity.[6] This practice
establishes a chain of trust so long as the hashes are posted on a site
authenticated by HTTPS.

Password verification[edit]
Main article: password hashing
A related application is password verification (first invented by Roger
Needham). Storing all user passwords as cleartext can result in a massive
security breach if the password file is compromised. One way to reduce this
danger is to only store the hash digest of each password. To authenticate a
user, the password presented by the user is hashed and compared with the
stored hash. (Note that this approach prevents the original passwords from
being retrieved if forgotten or lost, and they have to be replaced with new
ones.) The password is often concatenated with a random, non-
secret salt value before the hash function is applied. The salt is stored with the
password hash. Because users have different salts, it is not feasible to store
tables of precomputed hash values for common passwords. Key
stretching functions, such as PBKDF2, Bcrypt or Scrypt, typically use repeated
invocations of a cryptographic hash to increase the time required to
perform brute force attacks on stored password digests.

 100_005 Modes-of-Encr H-functions Page 8

https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Alice_and_Bob
https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/File_verification
https://en.wikipedia.org/wiki/Message_integrity
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA1
https://en.wikipedia.org/wiki/SHA2
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-6
https://en.wikipedia.org/wiki/Chain_of_trust
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/w/index.php?title=Cryptographic_hash_function&action=edit§ion=6
https://en.wikipedia.org/wiki/Password_hashing
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Roger_Needham
https://en.wikipedia.org/wiki/Roger_Needham
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Precomputation
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Brute_force_attack

perform brute force attacks on stored password digests.
In 2013 a long-term Password Hashing Competition was announced to choose
a new, standard algorithm for password hashing.

Proof-of-work
Main article: Proof-of-work system
A proof-of-work system (or protocol, or function) is an economic measure to
deter denial of service attacks and other service abuses such as spam on a network by
requiring some work from the service requester, usually meaning processing time by a
computer. A key feature of these schemes is their asymmetry: the work must be
moderately hard (but feasible) on the requester side but easy to check for the service
provider. One popular system — used in Bitcoin mining and Hashcash — uses partial
hash inversions to prove that work was done, as a good-will token to send an e-mail.
The sender is required to find a message whose hash value begins with a number of
zero bits. The average work that sender needs to perform in order to find a valid
message is exponential in the number of zero bits required in the hash value, while the
recipient can verify the validity of the message by executing a single hash function. For
instance, in Hashcash, a sender is asked to generate a header whose 160 bit SHA-1
hash value has the first 20 bits as zeros. The sender will on average have to try
219 times to find a valid header.

File or data identifier
A message digest can also serve as a means of reliably identifying a file;
several source code management systems, including Git, Mercurial and Monotone,
use the sha1sum of various types of content (file content, directory trees, ancestry
information, etc.) to uniquely identify them. Hashes are used to identify files
on peer-to-peer filesharing networks.

Pseudorandom generation and key derivation
Hash functions can also be used in the generation of pseudorandom bits, or
to derive new keys or passwords from a single secure key or password.

As of 2009, the two most commonly used cryptographic hash functions
were MD5 and SHA-1. However, a successful attack on MD5 broke Transport
Layer Security in 2008.

In February 2005, an attack on SHA-1 was reported that would find collision in about
269 hashing operations, rather than the 280 expected for a 160-bit hash function. In
August 2005, another attack on SHA-1 was reported that would find collisions in
263 operations. Though theoretical weaknesses of SHA-1 exist,[14][15] no collision (or
near-collision) has yet been found. Nonetheless, it is often suggested that it may be
practical to break within years, and that new applications can avoid these problems by
using later members of the SHA family, such as SHA-2.

 100_005 Modes-of-Encr H-functions Page 9

https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Roger_Needham
https://en.wikipedia.org/wiki/Roger_Needham
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Precomputation
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Brute_force_attack
https://en.wikipedia.org/wiki/Password_Hashing_Competition
https://en.wikipedia.org/wiki/Proof-of-work_system
https://en.wikipedia.org/wiki/Denial_of_service
https://en.wikipedia.org/wiki/Bitcoin_mining
https://en.wikipedia.org/wiki/Hashcash
https://en.wikipedia.org/wiki/Source_Code_Management
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Mercurial_(software)
https://en.wikipedia.org/wiki/Monotone_(software)
https://en.wikipedia.org/wiki/Sha1sum
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Filesharing
https://en.wikipedia.org/wiki/Pseudorandom
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-14
https://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-15
https://en.wikipedia.org/wiki/SHA-2

However, to ensure the long-term robustness of applications that use hash
functions, there was a competition to design a replacement for SHA-2.
On October 2, 2012, Keccak was selected as the winner of the NIST hash function
competition.
A version of this algorithm became a FIPS standard on August 5, 2015 under the
name SHA-3.

Keyed-hash message authentication code (HMAC) is a specific type of message
authentication code (MAC) involving a cryptographic hash function (hence the 'H')
in combination with a secret cryptographic key.
As with any MAC, it may be used to simultaneously verify both the data
integrity and the authentication of a message.
Any cryptographic hash function, may be used in the calculation of an HMAC.
The cryptographic strength of the HMAC depends upon the cryptographic
strength of the underlying hash function, the size of its hash output, and on the
size and quality of the key.

HMAC

HMAC based e-signature

Use in building other cryptographic primitives
Hash functions can be used to build other cryptographic primitives.
For these other primitives to be cryptographically secure, care must be taken
to build them correctly.
Message authentication codes (MACs) (also called keyed hash functions) are
often built from hash functions. HMAC is such a MAC.

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash
functions designed by the United States National Security Agency (NSA).[3]

From <https://en.wikipedia.org/wiki/SHA-2>

SHA-2 includes significant changes from its predecessor, SHA-1.
The SHA-2 family consists of six hash functions with digests (hash values)
that are 224, 256, 384 or 512 bits:
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

 100_005 Modes-of-Encr H-functions Page 10

https://en.wikipedia.org/wiki/NIST_hash_function_competition
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standards
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_key
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Cleartext
https://en.wikipedia.org/wiki/Cryptographic_strength
https://en.wikipedia.org/wiki/Cryptographic_strength
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

HMAC can be constructed form the block cipher using cipher block chaining (CBC)
mode of operation.

CBC-MAC

Hash functions based on block ciphers
There are several methods to use a block cipher to build a cryptographic hash
function, specifically a one-way compression function.
The methods resemble the block cipher modes of operation usually used for
encryption.
Many well-known hash functions, including MD4, MD5, SHA-1 and SHA-2 are built
from block-cipher-like components

Įdiegti šiuos .m failus į Octave, išzipuojant failą iš http://crypto.fmf.ktu.lt/xdownload/

Till this place

 100_005 Modes-of-Encr H-functions Page 11

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/One-way_compression_function
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2
http://crypto.fmf.ktu.lt/xdownload/

CBC-MAC

Cipher block chaining message authentication code (CBC-MAC) is a technique for
constructing a message authentication code from a block cipher. The message is
encrypted with some block cipher algorithm in CBC mode to create a chain of blocks
such that each block depends on the proper encryption of the previous block.
This interdependence ensures that a change to any of the plaintext bits will cause
the final encrypted block to change in a way that cannot be predicted or
counteracted without knowing the key to the block cipher.

From <https://en.wikipedia.org/wiki/CBC-MAC>

Signature Creation - Verification
S=Sig(PrKA, h)

V=Ver(PuKA, S, h), V{True, False}{1, 0}

Signature creation by Alice:

M is hashed with h-function H() by
computing its h-value h=H(M)

1.

Signature is computed on h-value h:2.
S=Sig(PrKA, h)=(r,s).

M - any message of finite length to be signed.

Received message M' is hashed by receiver
Bob h'=H(M').

1.

Signatutre is verified by verification
function Ver(PuKA, S, h').

2.

Signature verification:

Asymmetric Signing - Verification
Public Parameters - PP: >> p = 264043379; >> g=2;
 >> p = 251487959; >> g=7; Changed!

 100_005 Modes-of-Encr H-functions Page 12

https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/CBC-MAC

********************************* Till this place ****************

Bob h'=H(M').
Signatutre is verified by verification
function Ver(PuKA, S, h').

2.

If PrKA=x, PuKA=a and a = g x mod p
AND
 If M=M'

 Then signature is valid and V{True}.IBM Hyperledger Fabric
IBM Trust Food

 100_005 Modes-of-Encr H-functions Page 13

 100_005 Modes-of-Encr H-functions Page 14

