
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to 
provide information security such as confidentiality or authenticity. 
A block cipher by itself is only suitable for the secure cryptographic transformation (encryption 
or decryption) of one fixed-length group of bits called a block. 
A mode of operation describes how to repeatedly apply a cipher's single-block operation to 
securely transform amounts of data larger than a block.

Most modes require a unique binary sequence, often called an initialization vector (IV), for each 
encryption operation. The IV has to be non-repeating and, for some modes, random as well. 
The initialization vector is used to ensure distinct ciphertexts are produced even when the same 
plaintext is encrypted multiple times independently with the same key. 
Block ciphers may be capable of operating on more than one block size, but during 
transformation the block size is always fixed. 
Block cipher modes operate on whole blocks and require that the last part of the data be 
padded to a full block if it is smaller than the current block size. 

An initialization vector has different security requirements than a key, so the IV usually does not 
need to be secret. 
However, in most cases, it is important that an IV is never reused under the same key. 
For CBC and CFB, reusing an IV leaks some information about the first block of plaintext, and 
about any common prefix shared by the two messages. 
For OFB and CTR, reusing an IV completely destroys security. 
This can be seen because both modes effectively create a bitstream that is XORed with the 
plaintext, and this bitstream is dependent on the key and IV only. 
Reusing a bitstream destroys security. 
In CBC mode, the IV must, in addition, be unpredictable at encryption time; in particular, the 
(previously) common practice of re-using the last ciphertext block of a message as the IV for the 
next message is insecure (for example, this method was used by SSL 2.0). 
If an attacker knows the IV (or the previous block of ciphertext) before the next plaintext is 
specified, they can check their guess about plaintext of some block that was encrypted with the 
same key before (this is known as the TLS CBC IV attack).
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Electronic codebook (ECB)
The simplest of the encryption modes is the electronic codebook (ECB) mode (named after 
conventional physical codebooks). The message is divided into blocks, and each block is 
encrypted separately

Cipher block chaining (CBC)
Ehrsam, Meyer, Smith and Tuchman invented the cipher block chaining (CBC) mode of 
operation in 1976. 
In CBC mode, each block of plaintext is XORed with the previous ciphertext block before being 
encrypted. 
This way, each ciphertext block depends on all plaintext blocks processed up to that point. 
To make each message unique, an initialization vector - IV must be used in the first block. 
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The mathematical formula for CBC decryption is: 

Example

CBC has been the most commonly used mode of operation. Its main drawbacks are that encryption 
is sequential i.e., it cannot be parallelized.

If the first block has index 1, the mathematical formula for CBC encryption is 

CBC

Cipher block 
chaining

Encryption 
parallelizable:

No

Decryption 
parallelizable:

Yes

Random read 
access:

Yes

Counter (CTR)
CTR mode like OFB, counter mode turns a block cipher into a stream cipher. 

It generates the next keystream block by encrypting successive values of a "CounTeR". 
The counter can be any function which produces a sequence which is guaranteed not to repeat for a 
long time, although an actual increment-by-one counter is the simplest and most popular. 
The usage of a simple deterministic input function used to be controversial; critics argued that 
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The usage of a simple deterministic input function used to be controversial; critics argued that 
"deliberately exposing a cryptosystem to a known systematic input represents an unnecessary risk." 
However, today CTR mode is widely accepted and any problems are considered a weakness of the 
underlying block cipher, e.g. AES which is expected to be secure regardless of systemic bias in its 
input. 
Along with CBC, CTR mode is one of two block cipher modes recommended by Niels Ferguson and 
Bruce Schneier.
CTR mode was introduced by Whitfield Diffie and Martin Hellman in 1979.
CTR mode has similar characteristics to OFB, but also allows a random access property during 
decryption. 
CTR mode is well suited to operate on a multi-processor machine where blocks can be encrypted in 
parallel. 
Furthermore, it does not suffer from the short-cycle problem that can affect OFB.
If the IV/nonce is random, then they can be combined together with the counter using any invertible 
operation (concatenation, addition, or XOR) to produce the actual unique counter block for 
encryption. 
In case of a non-random nonce (such as a packet counter), the nonce and counter should be 
concatenated (e.g., storing the nonce in the upper 64 bits and the counter in the lower 64 bits of a 
128-bit counter block). 

Simply adding or XORing the nonce and counter into a single value would break the security under a 
chosen-plaintext attack in many cases, since the attacker may be able to manipulate the entire IV–
counter pair to cause a collision. 
Once an attacker controls the IV–counter pair and plaintext, XOR of the ciphertext with the known 
plaintext would yield a value that, when XORed with the ciphertext of the other block sharing the 
same IV–counter pair, would decrypt that block.
Note that the nonce in this diagram is equivalent to the initialization vector (IV) in the other diagrams. 
However, if the offset/location information is corrupt, it will be impossible to partially recover such data due to the dependence on byte offset. 
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Counter CTR

Encryption parallelizable: Yes

Decryption parallelizable: Yes

Random read access: Yes

A cryptographic hash function is a special class of hash function that has 
certain properties which make it suitable for use in cryptography. It is a 
mathematical algorithm that maps data of finite size to a bit string of a 
fixed size (a hash function) which is designed to also be a one-way 
function, that is, a function which is infeasible to invert. 
The only way to recreate the input data from an ideal cryptographic hash 
function's output is to attempt a brute-force search of possible inputs to 
see if they produce a match.
The input data is often called the message, and the output (the hash 
value or hash) is often called the message digest or simply the digest.

From <https://en.wikipedia.org/wiki/Cryptographic_hash_function> 

Cryptographic hash functions
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Cryptographic hash functions have many information-security applications, 
notably in digital signatures, message authentication codes (HMACs), and other 
forms of authentication. They can also be used as ordinary hash functions, to 
index data in hash tables, for fingerprinting, to detect duplicate data or 
uniquely identify files, and as checksums to detect accidental data corruption. 
Indeed, in information-security contexts, cryptographic hash values are 
sometimes called (digital) fingerprints, checksums, or just hash values, even 
though all these terms stand for more general functions with rather different 
properties and purposes.

A cryptographic hash function (specifically SHA-1) at work. A small change in the input (in the 
word "over") drastically changes the output (digest). This is the so-called avalanche effect.

Properties

it is quick to compute the hash value for any given message.•
a small change to a message should change the hash value so extensively 
that the new hash value appears uncorrelated with the old hash value.

•

Most cryptographic hash functions are designed to take a string of any 
finite length as input and produce a fixed-length hash value.
A cryptographic hash function must be able to withstand all known types 
of cryptanalytic attack. 

40 Hex numbers = 160 bits
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of cryptanalytic attack. 
In theoretical cryptography, the security level of a cryptographic hash 
function has been defined using the following properties:

Pre-image resistance
Given a hash value h it should be difficult to find any message m' such 
that h = hash(m'). This concept is related to that of one-way function. 
Functions that lack this property are vulnerable to preimage attacks.

•

Second pre-image resistance
Given an input m1 it should be difficult to find (different) input m2 such 
that hash(m1) = hash(m2). 

•

Functions that lack this property are vulnerable to second-preimage 
attacks.

Collision resistance
It should be difficult to find any two different messages m1 and m2 such 
that hash(m1) = hash(m2). Such a pair is called a cryptographic hash 
collision. This property is sometimes referred to as strong collision 
resistance. It requires a hash value at least twice as long as that required 
for preimage-resistance; otherwise collisions may be found by a birthday 
attack.[2]

•

These properties form a hierarchy, in that collision resistance implies 
second pre-image resistance, which in turns implies pre-image resistance, 
while the converse is not true in general. [3]

The weaker assumption is always preferred in theoretical cryptography, 
but in practice, a hash-functions which is only second pre-image resistant is 
considered insecure and is therefore not recommended for real 
applications.
Informally, these properties mean that a malicious adversary cannot 
replace or modify the input data without changing its digest. 
Thus, if two strings have the same digest, one can be very confident that 
they are identical. 

Illustration

>> sha256('RootHash PrevHash 737327631')
ans = F4AE534CD226FAF799  8C8424B348E020BA80639A687E93A0B8C5130ED  C51E6DE
>> sha256('RootHash PrevHash 737327632')
ans = B856211DF2EE15E30AB770C1A43CE014ECFE573182AFD885B28D96854DBC5F21
>> sha256('RootHash PrevHash 737327633')
ans = 9C18C764E347A58E57AC3F7A3C2874D5889A0E802699FEA47EEFF8C03BFEDA69
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Commitment
An illustration of the potential use of a cryptographic hash is as 
follows: Alice poses a tough math problem to Bob and claims she has solved it. 
Bob would like to try it himself, but would yet like to be sure that Alice is not 
bluffing. 
Therefore, Alice writes down her solution, computes its hash and tells Bob the 
hash value (whilst keeping the solution secret). 
Then, when Bob comes up with the solution himself a few days later, Alice can 
prove that she had the solution earlier by revealing it and having Bob hash it 
and check that it matches the hash value given to him before. (This is an 
example of a simple commitment scheme; in actual practice, Alice and Bob will 
often be computer programs, and the secret would be something less easily 
spoofed than a claimed puzzle solution).

Verifying the integrity of files or messages
Main article: File verification
An important application of secure hashes is verification of message integrity. 
Determining whether any changes have been made to a message (or a file), 
for example, can be accomplished by comparing message digests calculated 
before, and after, transmission (or any other event).
For this reason, most digital signature algorithms only confirm the 
authenticity of a hashed digest of the message to be "signed". Verifying the 
authenticity of a hashed digest of the message is considered proof that the 
message itself is authentic.
MD5, SHA1, or SHA2 hashes are sometimes posted along with files on 
websites or forums to allow verification of integrity.[6] This practice 
establishes a chain of trust so long as the hashes are posted on a site 
authenticated by HTTPS.

Password verification[edit]
Main article: password hashing
A related application is password verification (first invented by Roger 
Needham). Storing all user passwords as cleartext can result in a massive 
security breach if the password file is compromised. One way to reduce this 
danger is to only store the hash digest of each password. To authenticate a 
user, the password presented by the user is hashed and compared with the 
stored hash. (Note that this approach prevents the original passwords from 
being retrieved if forgotten or lost, and they have to be replaced with new 
ones.) The password is often concatenated with a random, non-
secret salt value before the hash function is applied. The salt is stored with the 
password hash. Because users have different salts, it is not feasible to store 
tables of precomputed hash values for common passwords. Key 
stretching functions, such as PBKDF2, Bcrypt or Scrypt, typically use repeated 
invocations of a cryptographic hash to increase the time required to 
perform brute force attacks on stored password digests.
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perform brute force attacks on stored password digests.
In 2013 a long-term Password Hashing Competition was announced to choose 
a new, standard algorithm for password hashing.

Proof-of-work
Main article: Proof-of-work system
A proof-of-work system (or protocol, or function) is an economic measure to 
deter denial of service attacks and other service abuses such as spam on a network by 
requiring some work from the service requester, usually meaning processing time by a 
computer. A key feature of these schemes is their asymmetry: the work must be 
moderately hard (but feasible) on the requester side but easy to check for the service 
provider. One popular system — used in Bitcoin mining and Hashcash — uses partial 
hash inversions to prove that work was done, as a good-will token to send an e-mail. 
The sender is required to find a message whose hash value begins with a number of 
zero bits. The average work that sender needs to perform in order to find a valid 
message is exponential in the number of zero bits required in the hash value, while the 
recipient can verify the validity of the message by executing a single hash function. For 
instance, in Hashcash, a sender is asked to generate a header whose 160 bit SHA-1 
hash value has the first 20 bits as zeros. The sender will on average have to try 
219 times to find a valid header.

File or data identifier
A message digest can also serve as a means of reliably identifying a file; 
several source code management systems, including Git, Mercurial and Monotone, 
use the sha1sum of various types of content (file content, directory trees, ancestry 
information, etc.) to uniquely identify them. Hashes are used to identify files 
on peer-to-peer filesharing networks.

Pseudorandom generation and key derivation
Hash functions can also be used in the generation of pseudorandom bits, or 
to derive new keys or passwords from a single secure key or password.

As of 2009, the two most commonly used cryptographic hash functions 
were MD5 and SHA-1. However, a successful attack on MD5 broke Transport 
Layer Security in 2008.

In February 2005, an attack on SHA-1 was reported that would find collision in about 
269 hashing operations, rather than the 280 expected for a 160-bit hash function. In 
August 2005, another attack on SHA-1 was reported that would find collisions in 
263 operations. Though theoretical weaknesses of SHA-1 exist,[14][15] no collision (or 
near-collision) has yet been found. Nonetheless, it is often suggested that it may be 
practical to break within years, and that new applications can avoid these problems by 
using later members of the SHA family, such as SHA-2.
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However, to ensure the long-term robustness of applications that use hash 
functions, there was a competition to design a replacement for SHA-2. 
On October 2, 2012, Keccak was selected as the winner of the NIST hash function 
competition. 
A version of this algorithm became a FIPS standard on August 5, 2015 under the 
name SHA-3.

Keyed-hash message authentication code (HMAC) is a specific type of message 
authentication code (MAC) involving a cryptographic hash function (hence the 'H') 
in combination with a secret cryptographic key. 
As with any MAC, it may be used to simultaneously verify both the data 
integrity and the authentication of a message. 
Any cryptographic hash function, may be used in the calculation of an HMAC. 
The cryptographic strength of the HMAC depends upon the cryptographic 
strength of the underlying hash function, the size of its hash output, and on the 
size and quality of the key.

HMAC

HMAC based e-signature

Use in building other cryptographic primitives
Hash functions can be used to build other cryptographic primitives. 
For these other primitives to be cryptographically secure, care must be taken 
to build them correctly.
Message authentication codes (MACs) (also called keyed hash functions) are 
often built from hash functions. HMAC is such a MAC.

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash 
functions designed by the United States National Security Agency (NSA).[3]

From <https://en.wikipedia.org/wiki/SHA-2> 

SHA-2 includes significant changes from its predecessor, SHA-1. 
The SHA-2 family consists of six hash functions with digests (hash values) 
that are 224, 256, 384 or 512 bits:
SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.
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HMAC can be constructed form the block cipher using cipher block chaining (CBC)
mode of operation.

CBC-MAC

Hash functions based on block ciphers
There are several methods to use a block cipher to build a cryptographic hash 
function, specifically a one-way compression function.
The methods resemble the block cipher modes of operation usually used for 
encryption. 
Many well-known hash functions, including MD4, MD5, SHA-1 and SHA-2 are built 
from block-cipher-like components

Įdiegti šiuos .m failus į Octave,                          išzipuojant failą iš http://crypto.fmf.ktu.lt/xdownload/

Till this place
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CBC-MAC

Cipher block chaining message authentication code (CBC-MAC) is a technique for 
constructing a message authentication code from a block cipher. The message is 
encrypted with some block cipher algorithm in CBC mode to create a chain of blocks 
such that each block depends on the proper encryption of the previous block. 
This interdependence ensures that a change to any of the plaintext bits will cause 
the final encrypted block to change in a way that cannot be predicted or 
counteracted without knowing the key to the block cipher.

From <https://en.wikipedia.org/wiki/CBC-MAC> 

Signature Creation - Verification
S=Sig(PrKA, h)

V=Ver(PuKA, S, h), V{True, False}{1, 0}

Signature creation by Alice:

M is hashed with h-function H() by 
computing its h-value   h=H(M)

1.

Signature is computed on h-value h:2.
S=Sig(PrKA, h)=(r,s).

M - any message of finite length to be signed.

Received message M' is hashed by receiver 
Bob h'=H(M').

1.

Signatutre is verified by verification 
function Ver(PuKA, S, h').

2.

Signature verification:

Asymmetric Signing - Verification
Public Parameters - PP:     >> p = 264043379;     >> g=2;
                                                >> p = 251487959;      >> g=7;   Changed!
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********************************* Till this place  ****************

Bob h'=H(M').
Signatutre is verified by verification 
function Ver(PuKA, S, h').

2.

If PrKA=x, PuKA=a and a = g x mod p
AND
     If  M=M'

     Then signature is valid and V{True}.IBM Hyperledger Fabric
IBM Trust Food
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